Part Number Hot Search : 
TGS2352 TDA7518 A6043S 2322074 SP690REP SM200 LN88RPX Z1SMA33
Product Description
Full Text Search
 

To Download RA20H8994M-E01 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 MITSUBISHI RF MOSFET MODULE
ELECTROSTATIC SENSITIVE DEVICE
OBSERVE HANDLING PRECAUTIONS
RA20H8994M
BLOCK DIAGRAM
896-902/ 935-941MHz 20W 12.5V, 3 Stage Amp. For MOBILE RADIO
DESCRIPTION The RA20H8994M is a 20-watt RF MOSFET Amplifier Module for 12.5-volt mobile radios that operate in the 896- to 941-MHz range. The battery can be connected directly to the drain of the enhancement-mode MOSFET transistors. Without the gate voltage (V GG=0V), only a small leakage current flows into the drain and the RF input signal attenuates up to 60 dB. The output power and drain current increase as the gate voltage increases. With a gate voltage around 4V (minimum), output power and drain current increases substantially. The nominal output power becomes available at 4.5V (typical) and 5V (maximum). At VGG=5V, the typical gate current is 1 mA. This module is designed for non-linear FM modulation, but may also be used for linear modulation by setting the drain quiescent current with the gate voltage and controlling the output power with the input power. FEATURES * Enhancement-Mode MOSFET Transistors (IDD0 @ VDD=12.5V, VGG=0V) * Pout>20W, T>25% @ VDD=12.5V, VGG=5V, Pin=50mW * Broadband Frequency Range: 896-902/ 935-941MHz * Low-Power Control Current IGG=1mA (typ) at VGG=5V * Module Size: 66 x 21 x 9.88 mm * Linear operation is possible by setting the quiescent drain current with the gate voltage and controlling the output power with the input power
2
3
1
4 5
1 2 3 4 5
RF Input (Pin) Gate Voltage (VGG), Power Control Drain Voltage (VDD), Battery RF Output (Pout) RF Ground (Case)
PACKAGE CODE: H2S
ORDERING INFORMATION: ORDER NUMBER RA20H8994M-E01 RA20H8994M-01
(Japan - packed without desiccator)
SUPPLY FORM Antistatic tray, 10 modules/tray
RA20H8994M
MITSUBISHI ELECTRIC 1/9
25 April 2003
ELECTROSTATIC SENSITIVE DEVICE
OBSERVE HANDLING PRECAUTIONS
MITSUBISHI RF POWER MODULE
RA20H8994M
RATING 17 6 100 40 -30 to +110 -40 to +110 UNIT V V mW W C C
MAXIMUM RATINGS (Tcase=+25C, unless otherwise specified)
SYMBOL VDD VGG Pin Pout Tcase(OP) Tstg PARAMETER Drain Voltage Gate Voltage Input Power Output Power Operation Case Temperature Range Storage Temperature Range CONDITIONS VGG<5V VDD<12.5V, Pin=0mW f=896-902/ 935-941MHz, ZG=ZL=50
The above parameters are independently guaranteed.
ELECTRICAL CHARACTERISTICS (Tcase=+25C, ZG=ZL=50, unless otherwise specified) SYMBOL PARAMETER
f Pout T 2fo in IGG -- -- Frequency Range Output Power Total Efficiency 2 Harmonic Input VSWR Gate Current Stability Load VSWR Tolerance VDD=10.0-15.5V, Pin=25-70mW, Pout=1 to 25W (VGG control), Load VSWR=3:1 VDD=15.2V, Pin=50mW, Pout=20W (VGG control), Load VSWR=8:1
nd
CONDITIONS
MIN
TYP
MAX
UNIT
MHz W %
896-902/ 935-941 VDD=12.5V, VGG=5V, Pin=50mW Pout=20W(VGG control) VDD=12.5V Pin=50mW 20 25 -30 3:1 1 No parasitic oscillation No degradation or destroy
dBc -- mA -- --
All parameters, conditions, ratings, and limits are subject to change with out notice.
RA20H8994M
MITSUBISHI ELECTRIC 2/9
25 April 2003
ELECTROSTATIC SENSITIVE DEVICE
OBSERVE HANDLING PRECAUTIONS
MITSUBISHI RF POWER MODULE
RA20H8994M
2nd, 3 HARMONICS versus FREQUENCY
rd
TYPICAL PERFORMANCE (Tcase=+25C, ZG=ZL=50, unless otherwise specified)
OUTPUT POWER, TOTAL EFFICIENCY, and INPUT VSWR versus FREQUENCY
60
out (W)
60 50
-20 -30
VDD=12.5V Pi n=50mW
50
in (-)
Pout @VGG=5V
T (%)
40 30 20 10 in @Pout=20W 0 885 895 905 915 925 935 FREQUENCY f(MHz) 945 T @Pout=20W
VDD=12.5V Pin=50mW
40 30 20 10 0 955
HARMONICS (dBc)
OUTPUT POWER P
-40
INPUT VSWR
TOTAL EFFICIENCY
-50
2nd @Pout=20W
-60 3 @Pout =20W -70 885 895 905 915 925 935 FREQUENCY f(MHz) 945 955
rd
OUTPUT POWER, POWER GAIN and DRAIN CURRENT versus INPUT POWER
60
out (dBm)
OUTPUT POWER, POWER GAIN and DRAIN CURRENT versus INPUT POWER
24
DD (A)
60
out (dBm)
24 20 16 12 IDD
f=902MHz, VDD =12.5V, VGG=5V
50 POWER GAIN Gp(dB) 40 30 20 10 0 -15 -10
POWER GAIN Gp(dB)
Gp
Gp
OUTPUT POWER P
DRAIN CURRENT I
40 30 20 10 0 -15 -10 -5 0 5 10 15 20 INPUT POWER Pin(dBm) IDD
f=896MHz, VDD =12.5V, VGG=5V
16 12 8 4 0
OUTPUT POWER P
8 4 0
-5
0
5
10
15
20
INPUT POWER Pin (dBm)
OUTPUT POWER, POWER GAIN and DRAIN CURRENT versus INPUT POWER
60 OUTPUT POWER P out (dBm) POWER GAIN Gp(dB) 50
Gp Pout
OUTPUT POWER, POWER GAIN and DRAIN CURRENT versus INPUT POWER
24
DD (A)
60
out (dBm)
24
DD (A)
20 16 12
50
Gp
Pout
20 16 12
40 30 20 10 0 -15
IDD f=935MHz, VDD =12.5V, VGG=5V
POWER GAIN Gp(dB)
40 30 20 10 0 -15 -10 -5 0 5 10 15 20 INPUT POWER Pin(dBm)
IDD f=941MHz, VDD =12.5V, VGG =5V
DRAIN CURRENT I
8 4 0
OUTPUT POWER P
8 4 0
-10
-5
0
5
10
15
20
INPUT POWER Pin(dBm)
OUTPUT POWER and DRAIN CURRENT versus DRAIN VOLTAGE
80
out (W)
OUTPUT POWER and DRAIN CURRENT versus DRAIN VOLTAGE
16
out (W)
80 70 60 50 40 30 20 10 0 2 4 6 8 10 12 DRAIN VOLTAGE V (V) DD 14 16
Pout f=902MHz, VGG =5V, Pin =50mW IDD
16 14
DD (A)
70 60 50 40 30 20 10 0 2
OUTPUT POWER P
DRAIN CURRENT I
ID D
OUTPUT POWER P
10 8
Pout
DD (A)
f=896MHz, VGG=5V, Pi n=50mW
14 12
12 10 8 6 4 2 0
DRAIN CURRENT I DRAIN CURRENT I
6 4 2 0
4
6 8 10 12 DRAIN VOLTAGE V D (V) D
14
16
RA20H8994M
MITSUBISHI ELECTRIC 3/9
DRAIN CURRENT
IDD(A) 25 April 2003
50
Pout
20
Pout
ELECTROSTATIC SENSITIVE DEVICE
OBSERVE HANDLING PRECAUTIONS
MITSUBISHI RF POWER MODULE
RA20H8994M
TYPICAL PERFORMANCE (Tcase=+25C, ZG=ZL=50, unless otherwise specified)
OUTPUT POWER and DRAIN CURRENT versus DRAIN VOLTAGE
80
out (W)
OUTPUT POWER and DRAIN CURRENT versus DRAIN VOLTAGE
16
out (W)
80 70 60 50 40 30 20 10 0 2 4 6 8 10 12 DRAIN VOLTAGE VDD (V) 14 16 IDD
Pout f=941MHz, VGG=5V, Pi n=50mW
16 14
DD (A)
70 60 50 40 30 20 10 0 2
OUTPUT POWER P
DRAIN CURRENT I
8
Pout
8 6 4 2 0
6 4 2 0
4
6 8 10 12 DRAIN VOLTAGE VD D (V)
14
16
OUTPUT POWER and DRAIN CURRENT versus GATE VOLTAGE
60
out (W)
OUTPUT POWER and DRAIN CURRENT versus GATE VOLTAGE
12 10
DD (A) out (W)
60 50 40
Pout f=902MHz, VDD=12.5V, Pi n=50mW
12 10 8 6 4 2 0 3 3.5 4 4.5 GATE VOLTAGE V (V) GG 5 5.5
DD (A)
50 40
f=896MHz, VDD=12.5V, Pi n=50mW
IDD 8
Pout
IDD
OUTPUT POWER P
DRAIN CURRENT I
OUTPUT POWER P
30 20 10 0 2.5 3 3.5 4 4.5 GATE VOLTAGE VGG(V) 5
6 4 2 0 5.5
30 20 10 0 2.5
OUTPUT POWER and DRAIN CURRENT versus GATE VOLTAGE
60
out (W)
OUTPUT POWER and DRAIN CURRENT versus GATE VOLTAGE
12 10
DD (A) out (W)
60 50 40 30 20 10 0 2.5
Pout f=941MHz, VDD=12.5V, Pi n=50mW
12 10 IDD 8 6 4 2 0 5.5
DD (A)
50 40 30 20 10 0 2.5
f=935MHz, VDD=12.5V, Pi n=50mW
IDD 8
Pout
OUTPUT POWER P
DRAIN CURRENT I
OUTPUT POWER P
6 4 2 0 5.5
3
3.5 4 4.5 GATE VOLTAGE VGG(V)
5
3
3.5 4 4.5 GATE VOLTAGE V V) GG(
5
RA20H8994M
MITSUBISHI ELECTRIC 4/9
DRAIN CURRENT I
DRAIN CURRENT I
DRAIN CURRENT I
IDD
OUTPUT POWER P
10
DD (A)
f=935MHz, VGG=5V, Pi n=50mW
14 12
12 10
25 April 2003
ELECTROSTATIC SENSITIVE DEVICE
OBSERVE HANDLING PRECAUTIONS
MITSUBISHI RF POWER MODULE
RA20H8994M
OUTLINE DRAWING (mm)
66.0 0.5 3.0 0.3 7.25 0.8 60.0 0.5 51.5 0.5 2-R2 0.5
21.0 0.5
9.5 0.5
5 1 2 3 4
14.0 1
2.0 0.5
O0.45 0.15
12.0 1 16.5 1 43.5 1 55.5 1
3.1 +0.6/-0.4
0.09 0.02
7.5 0.5 (50.4) 2.3 0.3
4.0 0.3 (9.88)
RA20H8994M
MITSUBISHI ELECTRIC 5/9
17.0 0.5
1 RF Input (P in) 2 Gate Voltage (V GG) 3 Drain Voltage (V DD) 4 RF Output (P out) 5 RF Ground (Case)
25 April 2003
ELECTROSTATIC SENSITIVE DEVICE
OBSERVE HANDLING PRECAUTIONS
MITSUBISHI RF POWER MODULE
RA20H8994M
TEST BLOCK DIAGRAM
Power Meter 1 2
DUT
3 4
5
Spectrum Analyzer
Signal Generator
Attenuator
Preamplifier
Attenuator
Directional Coupler
ZG=50
ZL=50
Directional Coupler
Attenuator
Power Meter
C1
C2
+ DC Power Supply V GG C1, C2: 4700pF, 22uF in parallel
+ DC Power Supply V DD
1 RF Input (P in) 2 Gate Voltage (V GG) 3 Drain Voltage (V DD) 4 RF Output (P out) 5 RF Ground (Case)
EQUIVALENT CIRCUIT
2
3
1
4
5
RA20H8994M
MITSUBISHI ELECTRIC 6/9
25 April 2003
ELECTROSTATIC SENSITIVE DEVICE
OBSERVE HANDLING PRECAUTIONS
MITSUBISHI RF POWER MODULE
RA20H8994M
PRECAUTIONS, RECOMMENDATIONS, and APPLICATION INFORMATION: Construction: This module consists of an alumina substrate soldered onto a copper flange. For mechanical protection, a plastic cap is attached with silicone. The MOSFET transistor chips are die bonded onto metal, wire bonded to the substrate, and coated with resin. Lines on the substrate (eventually inductors), chip capacitors, and resistors form the bias and matching circuits. Wire leads soldered onto the alumina substrate provide the DC and RF connection. Following conditions must be avoided: a) Bending forces on the alumina substrate (for example, by driving screws or from fast thermal changes) b) Mechanical stress on the wire leads (for example, by first soldering then driving screws or by thermal expansion) c) Defluxing solvents reacting with the resin coating on the MOSFET chips (for example, Trichlorethylene) d) Frequent on/off switching that causes thermal expansion of the resin e) ESD, surge, overvoltage in combination with load VSWR, and oscillation ESD: This MOSFET module is sensitive to ESD voltages down to 1000V. Appropriate ESD precautions are required. Mounting: Heat sink flatness must be less than 50 m (a heat sink that is not flat or particles between module and heat sink may cause the ceramic substrate in the module to crack by bending forces, either immediately when driving screws or later when thermal expansion forces are added). A thermal compound between module and heat sink is recommended for low thermal contact resistance and to reduce the bending stress on the ceramic substrate caused by the temperature difference to the heat sink. The module must first be screwed to the heat sink, then the leads can be soldered to the printed circuit board. M3 screws are recommended with a tightening torque of 0.4 to 0.6 Nm. Soldering and Defluxing: This module is designed for manual soldering. The leads must be soldered after the module is screwed onto the heat sink. The soldering temperature must be lower than 260C for a maximum of 10 seconds, or lower than 350C for a maximum of three seconds. Ethyl Alcohol is recommend for removing flux. Trichlorethylene solvents must not be used (they may cause bubbles in the coating of the transistor chips which can lift off the bond wires). Thermal Design of the Heat Sink: At Pout=20W, V DD=12.5V and Pin=50mW each stage transistor operating conditions are: Pin Pout Rth(ch-case) IDD @ T =25% VDD Stage (W) (W) (C/W) (A) (V) st 1 0.05 1.0 4.5 0.50 12.5 2nd 1.0 8.0 3.2 1.90 rd 3 8.0 20.0 1.6 3.90 The channel temperatures of each stage transistor Tch = Tcase + (V DD x IDD - Pout + Pin) x Rth(ch-case) are: Tch1 = Tcase + (12.5V x 0.50A - 1.0W + 0.05W) x 4.5C/W = Tcase + 23.9 C Tch2 = Tcase + (12.5V x 1.90A - 8.0W + 1.0W) x 3.2C/W = Tcase + 53.6 C Tch3 = Tcase + (12.5V x 3.90A - 20.0W + 8.0W) x 1.6C/W = Tcase + 58.8 C For long-term reliability, it is best to keep the module case temperature (Tcase) below 90C. For an ambient temperature Tair=60C and Pout=20W, the required thermal resistance Rth (case-air) = ( Tcase - Tair) / ( (P out / T ) - Pout + Pin ) of the heat sink, including the contact resistance, is: Rth(case-air) = (90C - 60C) / (20W/25% - 20W + 0.05W) = 0.50 C/W When mounting the module with the thermal resistance of 0.50 C/W, the channel temperature of each stage transistor is: Tch1 = Tair + 53.9 C Tch2 = Tair + 83.6 C Tch3 = Tair + 88.8 C The 175C maximum rating for the channel temperature ensures application under derated conditions.
RA20H8994M
MITSUBISHI ELECTRIC 7/9
25 April 2003
ELECTROSTATIC SENSITIVE DEVICE
OBSERVE HANDLING PRECAUTIONS
MITSUBISHI RF POWER MODULE
RA20H8994M
Output Power Control: Depending on linearity, the following two methods are recommended to control the output power: a) Non-linear FM modulation: By the gate voltage (V GG). When the gate voltage is close to zero, the RF input signal is attenuated up to 60 dB and only a small leakage current flows from the battery into the drain. Around VGG=4V, the output power and drain current increases substantially. Around VGG=4.5V (typical) to VGG=5V (maximum), the nominal output power becomes available. b) Linear AM modulation: By RF input power Pin. The gate voltage is used to set the drain's quiescent current for the required linearity. Oscillation: To test RF characteristics, this module is put on a fixture with two bias decoupling capacitors each on gate and drain, a 4.700 pF chip capacitor, located close to the module, and a 22 F (or more) electrolytic capacitor. When an amplifier circuit around this module shows oscillation, the following may be checked: a) Do the bias decoupling capacitors have a low inductance pass to the case of the module? b) Is the load impedance ZL=50? c) Is the source impedance ZG=50? Frequent on/off switching: In base stations, frequent on/off switching can cause thermal expansion of the resin that coats the transistor chips and can result in reduced or no output power. The bond wires in the resin will break after long-term thermally induced mechanical stress. Quality: Mitsubishi Electric is not liable for failures resulting from base station operation time or operating conditions exceeding those of mobile radios. This module technology results from more than 20 years of experience, field proven in tens of millions of mobile radios. Currently, most returned modules show failures such as ESD, substrate crack, and transistor burnout, which are caused by improper handling or exceeding recommended operating conditions. Few degradation failures are found.
Keep safety first in your circuit designs!
Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur. Trouble with semiconductors may lead to p ersonal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material, or (iii) prevention against any malfunction or mishap.
RA20H8994M
MITSUBISHI ELECTRIC 8/9
25 April 2003


▲Up To Search▲   

 
Price & Availability of RA20H8994M-E01

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X